
ReConnect

First Technical Defense Report

Louis Harel

Yoann Balasse

Victor Tendron

Adam Franco

Maxime Houwenaghel

A1 EPITA Paris

Tuesday 14th January, 2025

1

Table of contents

1 Introduction 5

1.1 Report presentation . 5

1.2 Quick reminder of the nature of the project 5

2 Teamwork Organization 6

2.1 Version control . 6

2.2 Continuous integration . 8

3 Multiplayer and Networking 10

3.1 Difference between networking and multiplayer 10

3.2 Package choice . 10

3.3 Networking setup . 11

4 Menu and User Interface 13

4.1 Current state of advancement . 13

4.2 Future improvements . 14

5 Player Functionalities 16

5.1 Context . 16

5.2 Requirements . 16

5.3 Third-person camera . 16

5.3.1 Choice of using Cinemachine . 16

5.3.2 Free look camera . 17

5.3.3 Deoccluder and decollider components 17

5.4 Player movements and animations . 17

5.4.1 Temporary 3D model for the character 17

5.4.2 Cardinal movements . 18

5.4.3 Jump mechanic . 18

5.4.4 Crouching mechanic . 19

5.5 Animations . 19

5.6 Future features . 19

6 3D Modeling 20

7 Website 22

7.1 User interface design . 22

7.2 Domain name and server . 23

3

7.3 First prototype . 24

7.4 Our font . 24

7.5 Avatars . 25

8 Advancement 26

9 Conclusion 27

4

1 Introduction

1.1 Report presentation

This document is the defense report of the ReConnect project, led by LYVAM Studio, it

explains the progress of the project from its start in November 2024 to the first defense

in January 2024. It describes the difficulties and issues encountered on each task and

mentions planned improvements.

1.2 Quick reminder of the nature of the project

ReConnect is a 3D single or multi player educational video game project. It takes place

on an extraterrestrial planet named Edenia. The player is sent to this planet for commu-

nication maintenance. His goal is to fix these communications and repair his ship so he

can return to Earth.

To do so, the player will have to solve electrical and electronic puzzles to evolve in

the game and progress. The further the player advances in the game, the more difficult

the puzzles will be. At the end of the game, the player will have acquired electrical and

electronic skills equivalent to those taught in high school.

5

2 Teamwork Organization

2.1 Version control

Version Control is an essential concept for any coding project. It is a practice that consists

of tracking different versions in the history of source code files, often text files.

At the beginning of our project, before starting coding, we had to decide how we would

work together and how we would synchronize our work. We considered two ways to do

so.

The first was to use Git with an application such as GitHub or GitLab that could

allow us to synchronize, share, and manage our work. The second one was using Unity

Version Control System.

We eventually chose to use Git because we were used to it thanks to our previous

personal coding experience and our classes at Epita. Then we had to decide if we would

use GitHub or GitLab. We chose GitHub because most of us had already used it before,

unlike GitLab.

Additionally, GitHub provides various features to enhance productivity and commu-

nication among the team, such as Issues reports that help us keep track of bugs, feature

suggestions, and assign people to their resolution.

6

Figure 1: The Issue tab on the Reconnect Github repository

Our studio also set up Git LFS (Git large files storage) to be able to use Git with the

large binary Unity files. To manage them, Git needs a plugin because otherwise, it can

only handle limited sized files.

To isolate the different tasks during the development process, we use branches. This

permits us to avoid modifying the same code at the same time and having to deal with

merging conflicts. When a feature is finished, we create a pull request, and the code is

reviewed by other team members before being integrated into the main branch.

7

Figure 2: The different branches we currently have on our repository

2.2 Continuous integration

We wanted a faster mechanism to build our project than to do it manually from the Unity

editor. Since it is especially important for us that our project is multi-platform and our

members use Windows Linux and Mac, we also had to build for all these platforms effi-

ciently. Thus, we made a continuous integration thanks to the CI tool provided by GitHub.

First, we created a workflow to build for Windows, Linux and MacOS. It uses various

GitHub actions such as: the checkout action – that allows the CI to have access to the

repository, – the cache action – that allows libraries to be stored to avoid their installation

each time the workflow is run, – the unity-builder action – that allows to build any Unity

project for different platforms – and finally, the upload-artifact action – that allows to

make the builds available from the GitHub website.

Then we needed to build a server version for our server. Although a server could be

run from the normally built client, a proper and distinct server version allows to directly

run a server without having to click on any button and to run on headless servers i.e.,

servers that have no graphical environment. This is important since most of the servers

do not have a graphical environment for efficiency reasons.

To do so, we created a second workflow to build this server version of our game. We

did it by giving argument to the unity-builder action, indicating that the game should be

built for a Linux server.

8

We chose to make the server version only available on a Linux machine since most of

the servers run on Linux and the server that we own is on Linux.

Finaly, we made a workflow to be able to run both previous workflows at once by

clicking only on one button.

Figure 3: Our one-click build workflow in Github Actions

9

3 Multiplayer and Networking

We began the project with multiplayer and networking because it had been recommended

by various people including Epita’s students and teachers, to multiple of the members of

the studio. Indeed, creating a single player local game as a first step and then, trying to

migrate to a multiplayer game seems to be a dangerous and fastidious thing to do.

3.1 Difference between networking and multiplayer

Although they go together, multiplayer and networking are two distinct concepts. We are

going to explain each of them in the context of video games.

• For a game to be a multiplayer game, multiple players must be able to play together

at the same time.

• However, networking is about multiple machines to be synchronized over the network

i.e., the internet here. Note that a game can be multiplayer without being networked

(for instance, Untitled Goose Game, Overcooked 2, It takes two). In the same way

but more rarely, games can be networked without being multiplayer.

3.2 Package choice

Adam being the person responsible for the multiplayer and networking, he tried first the

PUN 2 package (Photon Unity Networking 2) with the advice of Maxime who is substitute

of this task and Louis who has already had some experience in making games with Unity.

The benefits of PUN are the worldwide community that comes with many resources, tuto-

rials, and examples. So, Adam started following a tutorial made by SRCoder on YouTube.

However, we realized that PUN 2 was outdated and so were the available resources. PUN

2 is still supported by the newer version of Unity, but has no new features since 2019.

The main issue with PUN 2 was that there were no resources with the newest version of

Unity. In addition, Unity is a software that evolves constantly and quickly, making old

resources difficult to use. This led us to choose another networking package.

Then, we looked for another networking solution. We discovered that Photon devel-

oped new networking softwares to replace the old PUN 2: Fusion and Quantum. However,

choosing them seemed risky in our opinion due to their lack of documentation, tutorials,

and resources in general. We also read in some forums that it was often not recommended

to begin Unity networking with these packages due to their technicality.

10

Eventually, we chose Mirror. Miror is a famous library for Unity networking games.

It has a large community of users and contributors, as it is an open-source networking

solution.

Figure 4: Mirror is a high level Networking library for Unity

3.3 Networking setup

More concretely, to set up a multiplayer game using Mirror we initially had to create a

player prefab. A prefab is a Unity object that is not directly present in a scene but that

can be instantiated and spawned in any scene thanks to a script or certain components.

In this case, the player object must be a prefab because we do not want to have a player

in the scene by default when a server is launched, and we want to create a new player

object each time a client connects to the server.

Secondly, we had to configure the NetworkManager object. It is the object responsible

for the global networking management. For instance, it has functions to run a server, con-

nect a client to a server, or run a host. Configuring this object consisted in choosing the

network protocol (KCP), referencing the player prefab, setting up the spawner method

and choosing the default server ip address and port.

Although we will probably add some features to the networking part, to synchronize

objects that we will add later, we consider the main part of the networking task as done

at 100%.

11

Figure 5: 3 players connected to a distant server walking together in the same game

12

4 Menu and User Interface

The development of the menu and interface focused on creating an intuitive and visually

appealing experience for players, while ensuring functionality for single-player and multi-

player modes.

4.1 Current state of advancement

Our menu is composed of three pages: the main page, the multiplayer page, and the

settings page. The main page is the one displayed when the game is launched. It has

four buttons:“Singleplayer”, “Multiplayer”, “Settings” and “Quit”. The “Singleplayer”

button allows the player to run the game in host mode i.e., creating a local server and

connecting a client to it. The “Multiplayer” and “Settings” buttons go to the multiplayer

and settings menus described below. The “Quit” button basically quit the game.

Figure 6: The main menu of the game

The Settings interface contains various input formats that are not yet linked to real

settings. It also contains a cross on the top right corner to go back to the main menu and

a full-screen mode toggle.

13

Figure 7: The settings menu of the game

The Multiplayer menu, accessible from the “Multiplayer” button of the main menu,

allows the player to choose the ip of the server they want to connect. They can then

connect it by clicking on the “Join” button or go back to the menu by clicking on the

“Back” button.

Figure 8: The multiplayer menu of the game

4.2 Future improvements

While the new menu structure is in place, some buttons, such as the “Singleplayer” and

“Multiplayer” buttons, are not yet fully functional. Compatibility between the menu in-

terface and the networking system is a priority.

14

In addition, we can enhance visual for menu interactions by adding features such as

hover and click animations. We can also allow the player to change the key bindings.

15

5 Player Functionalities

5.1 Context

In our video game, the player embodies a human character who is the only survivor of

a rescue mission. His goal is to understand what happened to a crew of scientists who

were located on an exoplanet to study its viability to accommodate the Earth’s human

population. The character is thus a key feature of the video game, and it seemed quite

difficult to begin the creation of the several levels before having a completely playable

character with various movements, speeds, and animations.

Because this task was not really attributed to anyone, Yoann, attributed to the level

design, decided to develop these features that are required by his tasks.

5.2 Requirements

At the beginning, we discussed the characteristics of the player’s movements and playa-

bility.

We decided that they need to have a third person camera, including all the challenges

this feature requires (anti-collision, anti-occlusion, movement consistency, ...). We also

wanted the player to be able to walk, run, and crouch, each of these moves requiring

different speeds, and to jump to be able to climb on some future environment objects.

Additionally, for the realism of our game, we needed to play some animations on the

character’s body to illustrate the walking, running, crouching, jumping and idling actions

and some combinations of these actions such as crouch walking, or crouch idling.

5.3 Third-person camera

5.3.1 Choice of using Cinemachine

First, the camera scripting would have required extensive work and feature development,

troubleshooting to provide a suitable and stable camera system. The time that we would

have spent on this part of our game could have been used for more specific functionalities

of our game such as the electronic simulation, the puzzle design, etc. For these reasons,

we decided to use Unity’s Cinemachine package which is dedicated to offer complex and

complete camera systems easily so that we can focus on developing game-specific behaviors

and functionalities.

16

5.3.2 Free look camera

We used the Free Look Camera with Orbit Camera, which perfectly suits our game needs.

The 3 rings that we can set with different radius and height permit to define a sphere the

camera will stay on when moving.

Figure 9: The 3 rings defining the orbit on which the camera moves

5.3.3 Deoccluder and decollider components

Additionally, we configured a Deoccluder Component from Cinemachine to preserve sight

with the player and a Decollider Component to prevent the camera from entering objects.

The disocclusion strategy used is to Preserve the Camera Height, this means that when

an obstacle is in the line of sight of the target (our player), we want the camera to move

to an alternative position while staying at the same height to avoid the obstacle.

5.4 Player movements and animations

5.4.1 Temporary 3D model for the character

Then, for the player movement, we needed to have a character model with a skeletal

structure that would permit it to be animated. However, the 3D team from LYVAM

17

Studio has not yet finished the modeling of the player. In the meantime, we decided

to import a basic character model from the Unity Asset Store temporarily to continue

working on the player movement and animation.

Figure 10: The character 3d model placeholder we imported until ours is ready

5.4.2 Cardinal movements

First, we implemented the basic cardinal movements, then we improved it by rotating the

player accordingly to face in the direction they are moving.

The first difficulty we faced was to link the rotation of the camera with the rotation of

the player. In fact, we wanted the character to look in the direction of the camera so that

the movement “forward”/ “backward” / “left” / “right” feel more natural for the player.

5.4.3 Jump mechanic

Then to implement the jump mechanic, we needed to have the physics knowledge about

the velocity of a falling object over time. This required some research in the field of

physics, and finally we used for initial vertical velocity the final velocity at impact as

described on this Wikipedia page and we subtract the gravity of Earth to simulate the

gravity attraction.

Even though the jump works perfectly, it still lacks some improvements when combined

with movement. Currently the player can be moved whilst being in the air, which is an

unwanted behavior that we intend to fix soon.

18

https://fr.wikipedia.org/wiki/Chute_libre_(physique)#Chute_libre_sans_vitesse_initiale

5.4.4 Crouching mechanic

Finally, the crouching mechanic is quite simple: it reduces the speed of the player and

plays the animation to make the player look crouching. This feature is still primitive and

needs to be improved by modifying the character’s collision box to adapt to the player’s

height when crouching, to enable him to move into a space where his original size would

not have allowed him to go.

Figure 11: Our player crouching

5.5 Animations

For the animations, we used Maximo.com, a royalty free library of animations provided

by Adobe. Once we configured the Animator Component in Unity to switch between the

different states and play the animations accordingly. We used the new Input System from

Unity that permits us to use a GUI to define our keymaps with multiplatform inputs.

5.6 Future features

Soon, we intend to add a sliding mechanism when the character is on a slope that is too

steep. Additionally, we would like to make some animation of the player being happy

that would be triggered when he finishes a level.

19

https://maximo.com

6 3D Modeling

Creating our own 3D environments is essential for the immersion and authenticity of our

universe, so we first made sure we had a complete mastery of Blender, so we could make

our assets, characters and maps all at once.

For instance, we tried to make a map of a planet that has been impacted by asteroids.

It was important to make the seed of the plane a random seed such that it looks like more

natural. To be able to do so, we used Voronoi diagrams (partitions of a plane) and set

the colors of the map as height such that it creates summits and craters in a random way.

Figure 12: The test map from a near point of view

20

Figure 13: The test map from a high point of view

Figure 14: How the shading works

The figure above explain how we use the 2 Voronoi textures and 2 noise textures to

set colors (from white to dark) as the factor of the distance (height). We also set the scale

and the details of the map.

We did some tests for mobs and other assets but didn’t finished them properly yet.

21

7 Website

The creation of a website aims to introduce our studio “LYVAM Studio” and our new

game “Reconnect”. The website was created from zero in HTML and CSS because these

languages are easy to understand for everyone. Also, we used Sublime Text as text editor

during the conception. It is a simple software, quite clean in contrast to Visual Studio

Code. Besides, we used Mozilla Developer Network Web Documentation (MDN Web

Doc) to fix our issues.

The final version of the website is accessible at the following URL: lyvam.studio.

Figure 15: The home page of the website at lyvam.studio

7.1 User interface design

A few prototypes were created before the final design of the website. We decided to

use Figma to conceptualize the different pages. Figma is a vector graphics editor and a

prototyping tool.

22

https://lyvam.studio
https://lyvam.studio

Figure 16: Website prototype made on Figma

We decided to make 3 separate pages, without mentioning the home page. A larger

number of pages would tend to lose the visitor. In addition, this allows the visitor to

understand the theme of the page and where to search for the desired information quicker.

First, the “Studio” page introduces LYVAM Studio values and our team members.

LYVAM Studio develops educational games, mostly intended for high school students,

which aims to facilitate the learning of subjects through playful practice.

Second, the “Project” page presents our new game “Reconnect” in development and

the assets and software used in the conception of the game and the website.

Finally, the last page “Game” allows the visitor to download the game for Windows,

MacOS and Linux. Moreover, the report of the first defense is available on this page.

The website is entirely responsive and adapts to every screen, computer and smart-

phone. Nonetheless, the website was not designed for smartphone users and the user

experience is not completely fluid.

7.2 Domain name and server

The Studio has decided to get a domain name to find easily the website. In fact, the

domain name lyvam.studio is more memorable because of the use of our studio’s name.

23

This goes in pairs with the communication part of the project. Also, the domain name is

used in the game accessibility. We added a subdomain name reconnect.lyvam.studio

to simplify the connection to our game server instead of typing an IP address.

Additionally, the website is hosted and deployed by Vercel’s servers. Vercel is a com-

pany that has developed the web framework NextJS and proposes Platform as a service.

It is a type of Cloud Computing where Vercel maintains the servers, the OS and all the

infrastructure.

Furthermore, the whole code of the website is available on Github, a platform that

aims to manage projects and git version. It allows Vercel to upload the website’s code

and to deploy it on their servers. Thus, when an update is done on GitHub, the website

is automatically updated.

7.3 First prototype

At first, we wanted to create a website based on the NextJS web framework. Using

the documentation, the goal was to implement animations to improve the fluidity of the

user experience. However, it took too much time to learn how a framework works and

the specificity of NextJS. Thus, we went back to the basic development of a website by

developing in HTML and CSS. HTML is the structure of the website, that is to say it

allows us to create a paragraph, a title and implement an image. On the other hand,

CSS embellishes the display of HTML by adding colors, spaces and by customizing the

different elements of the structure.

7.4 Our font

Alongside the first prototype, we decided to create our own font called ”Reconnected”

to improve the immersion into the Reconnect’s universe. This font manages only capital

letters because we wanted it to be implemented in titles and names. We used Affinity

Designer, a vector graphic editor, to create the font.

Nonetheless, once the design stage finished, we had few troubles with the implemen-

tation of the font in a correct format. That is to say, to transform a drawing in a Web

Open Font Format (.woff) file. Thus, the creation of our own font is suspended until we

find a solution.

24

Figure 17: Prototype of our font ”Reconnected”

7.5 Avatars

Finally, the implementation of an organization chart with photographs in the “Studio”

page is more important that we thought. It shows the ambiance of the studio and how

we see ourselves. Hence, we had to make an organization chart with photograph that fits

with our values. Formal photos of our team would be very serious and will not reflect

how the studio wants to reflect.

Then, the intervention of DiceBear is perfect. It is an open source avatar library that

allows you to create an avatar. By customizing all the aspects of a head.

Figure 18: organization chart with photographs of LYVAM Studio

25

8 Advancement

The following table shows the current advancement on the project in comparison with

the advancement that we predicted in our technical book of specifications.

Scenario 70% 55%

Menu 75% 75%

HUD 0% 0%

Physics 30% 30%

First tutorial 0% 100%

Music & FX 0% 100%

First level design 0% 100%

3D modeling 40% 50%

Interactions 0% 0%

AI 0% 0%

Multiplayer & networking 100% 100%

Website 100% 100%

Communication 0% 100%

Table 1: Current advancement compared to the planed advancement

26

9 Conclusion

For this first technical defense, we got the functional base of our game in terms of network-

ing and player and camera movements. We can start a server, a client or a host (server

and client at the same time) in the main menu of the game. Using multiple instances of

the game, either on the same machine or on different machines, two clients can connect

to a server and see each other synchronized over the network.

We got an advancement on the menus, but the newest version of these are not yet

fully integrated to the main version of our project.

We are late on the implementation of the electricity and therefore the level design and

the tutorials. This will be the priority for two of our members, so it be well advanced by

the second technical defense in March.

We completed and built our website, which is available at the URL lyvam.studio. It

contains information about our studio, our team, and our project, including an overview,

this report, and downloadable versions of the game for Windows, Linux, and MacOS.

27

https://lyvam.studio

	Introduction
	Report presentation
	Quick reminder of the nature of the project

	Teamwork Organization
	Version control
	Continuous integration

	Multiplayer and Networking
	Difference between networking and multiplayer
	Package choice
	Networking setup

	Menu and User Interface
	Current state of advancement
	Future improvements

	Player Functionalities
	Context
	Requirements
	Third-person camera
	Choice of using Cinemachine
	Free look camera
	Deoccluder and decollider components

	Player movements and animations
	Temporary 3D model for the character
	Cardinal movements
	Jump mechanic
	Crouching mechanic

	Animations
	Future features

	3D Modeling
	Website
	User interface design
	Domain name and server
	First prototype
	Our font
	Avatars

	Advancement
	Conclusion

